Contents:
»
1. Article Information, Introduction
2. HYALURONAN-BASED ANTIADHESIVE AGENTS
3. HERNIA REPAIR AND HYALURONAN CONTAINING MESHES
4. THE USE OF HYALURONAN IN INFECTIOUS CONDITIONS
5. MECHANISMS OF ACTION OF HYALURONAN
CONCLUSIONS
HA-based antiadhesive agents have proven to be effective reducers of postsurgical adhesions in both experimental and clinical studies. Unfortunately, several products have been withdrawn form the market before larger clinical trials could be initiated. The application of HA in composite meshes for the repair of abdominal wall hernia appears to be worthwhile as well. Data on the use of HA under infectious conditions are scarce and do not allow conclusions about its preventive potential and clinical safety under these conditions. However, the use of HA solution appears to be beneficial in experimental models. Data on oncologic repercussions using HA are also scarce and contradictory, troubling conclusions on the use of HA-based agents in patients with a malignancy. Widespread use of HA should therefore be restricted to noninfectious and benign conditions. Further elucidation of the involved mechanisms and the clinical application of HA in patients with peritonitis and patients with abdominal malignancies are challenges for future trials.
REFERENCES
1. Menzies D. Peritoneal adhesions. Incidence, cause, and prevention. Surg Annu 1992;24;Pt 1:27-45.
2. Parker MC, Wilson MS, Menzies D et al. Colorectal surgery: the risk and burden of adhesion-related complications. Colorectal Dis 2004;6:506-11.
3. Soules MR, Dennis L, Bosarge A, et al. The prevention of postoperative pelvic adhesions: an animal study comparing barrier methods with dextran-70. Am J Obstet Gynecol 1982;143:829-34.
4. Stovall TG, Elder RF, Ling FW. Predictors of pelvic adhesions. J Reprod Med 1989; 34:345-8.
5. Van Der Krabben AA, Dijkstra FR, Nieuwenhuijzen M, et al. Morbidity and mortality of inadvertent enterotomy during adhesiotomy. Br J Surg 2000;87:467-71.
6. Wiseman DM, Trout JR, Franklin RR, et al. Metaanalysis of the safety and efficacy of an adhesion barrier (Interceed TC7) in laparotomy. J Reprod Med 1999;44:325-31.
7. Farquhar C, Vandekerckhove P, Watson A, et al. Barrier agents for preventing adhesions after surgery for subfertility. Cochrane Database Syst Rev 2000:CD000475.
8. Sawada T, Nishizawa H, Nishio E, et al. Postoperative adhesion prevention with an oxidized regenerated cellulose adhesion barrier in infertile women. J Reprod Med 2000; 45:387-9.
9. Hellebrekers BW, Trimbos-Kemper GC, van Blitterswijk CA, et al. Effects of five different barrier materials on postsurgical adhesion formation in the rat. Hum Reprod 2000; 15:1358-63.
10. Meyer K, Palmer JW. The polysaccharide of the vitreous humor. J Biol Chem 1934; 107:629-34.
11. Balazs EA, Laurent TC, Jeanloz RW. Nomenclature of hyaluronic acid. Biochem J 1986;235:903.
12. Burns JW, Colt MJ, Burgess LS, et al. Preclinical evaluation of Seprafilm bioresorbable membrane. Eur J Surg 1997;Suppl 577:40-8.
13. Kutlay J, Ozer Y, Isik B, et al. Comparative effectiveness of several agents for preventing postoperative adhesions. World J Surg 2004;28:662-5.
14. Reijnen MMPJ, Holmdahl L, Kooistra T, et al. Time course of peritoneal tissue plasminogen activator after colonic surgery in rats with and without bacterial peritonitis and the effect of hyaluronan based antiadhesive agents. Br J Surg 2002;89:103-9.
15. Tarhan OR, Eroglu A, Cetin R, et al. Effects of seprafilm on peritoneal fibrinolytic system. ANZ J Surg 2005;75:690-2.
16. Becker JM, Dayton MT, Fazio VW, et al. Prevention of postoperative abdominal adhesions by a sodium hyaluronate-based bioresorbable membrane: a prospective, randomized, double-blind multicenter study. J Am Coll Surg 1996;183:297-306.
17. Diamond MP. Reduction of adhesions after uterine myomectomy by Seprafilm membrane (HAL-F): a blinded, randomized, multicenter clinical study. Fertil Steril 1996;66:904-10.
18. Vrijland W, Tseng LNL, Eijkman HJM, et al. Fewer intraperitoneal adhesions due to hyaluronic acid-carboxymethylcellulose membrane: a randomized clinical trial. Ann Surg 2002;235:193-9.
19. Fazio VW, Cohen Z, Fleshman JW, et al. Reduction in adhesive small-bowel obstruction by Seprafilm adhesion barrier after intestinal resection. Dis Colon Rectum 2006; 49:1-11.
20. Tang CL, Seow-Choen F, Fook-Chong S, et al. Bioresorbable adhesion barrier facilitates early closure of the defunctioning ileostomy after rectal excision: a prospective, randomized trial. Dis Colon Rectum 2003;46:1200-7.
21. Inoue M, Uchida K, Miki C, et al. Efficacy of Seprafilm for reducing reoperative risk in pediatric surgical patients undergoing abdominal surgery. J Pediatr Surg 2005;40:1301-6.
22. Beck DE, Cohen Z, Fleshman JW, et al. A prospective, randomized, multicenter, controlled study of the safety of Seprafilm Adhesion Barrier in abdominopelvic surgery of the intestine. Dis Colon Rectum 2003; 46:1310-9.
23. Kayaoglu HA, Ozkan N, Hazinedaroglu SM, et al. An assessment of the effects of two types of bioresorbable barriers to prevent postoperative intra-abdominal adhesions in rats. Surg Today 2005;35:946-50.
24. Cohen Z, Senagore AJ, Dayton MT, et al. Prevention of postoperative abdominal adhesions by a novel, glycerol/sodium hyaluronate /carboxymethylcellulose-based bioresorbable membrane: a prospective, randomized, evaluator-blinded multicenter study. Dis Colon Rectum 2005;48:1130-9.
25. Burns JW, Skinner K, Colt J, et al. Prevention of tissue injury and postsurgical adhesions by precoating tissues with hyaluronic acid solutions. J Surg Res 1995;59:644-52.
26. Diamond MP. Reduction of de novo postsurgical adhesions by intraoperative precoating with Sepracoat (HAL-C) solution: a prospective randomized, blinded, placebo-controlled multicenter study. Fertil Steril 1998;69:1067-74.
27. Johns DB, Rodgers KE, Donahue WD, et al. Reduction of adhesion formation by postoperative administration of ionically cross-linked hyaluronic acid. Fertil Steril 1997; 68:37-42.
28. Detchev R, Bazot M, Soriano D, et al. Prevention of de novo adhesion by ferric hyaluronate gel after laparoscopic surgery in an animal model. JSLS 2004;8:263-8.
29. Roman H, Canis M, Kamble M, et al. Efficacy of three adhesion-preventing agents in reducing severe peritoneal trauma induced by bipolar coagulation in a laparoscopic rat model. Fertil Steril 2005;83 Suppl 1:1113-8.
30. Thornton MH, Johns DB, Campeau JD, et al. Clinical evaluation of 0.5% ferric hyaluronate adhesion prevention gel for the reduction of adhesions following peritoneal cavity surgery: open-label pilot study. Hum Reprod 1998;13:1480-5.
31. Lundorff P, van Geldorp H, Tronstad SE, et al. Reduction of post-surgical adhesions with ferric hyaluronate gel: a European study. Hum Reprod 2001;16:1982-8.
32. Johns DB, Keyport GM, Hoehler F, et al. Reduction of postsurgical adhesions with Intergel adhesion prevention solution: a multicenter study of safety and efficacy after conservative gynecologic surgery. Fertil Steril 2001;76:595-604.
33. Tang CL, Jayne DG, Seow-Choen F, et al. A randomized controlled trial of 0.5% ferric hyaluronate gel (Intergel) in the prevention of adhesions following abdominal surgery. Ann Surg 2006;243:449-55.
34. Burns JW, Skinner K, Colt MJ, et al. A hyaluronate-based gel for the prevention of postsurgical adhesions: evaluation in two animal species. Fertil Steril 1996;66:814-21.
35. Leach RE, Burns JW, Dawe EJ, et al. Reduction of postsurgical adhesion formation in the rabbit uterine horn model with use of hyaluronate/carboxymethylcellulose gel. Fertil Steril 1998;69:415-8.
36. De Iaco PA, Stefanetti M, Pressato D, et al. A novel hyaluronan-based gel in laparoscopic adhesion prevention: preclinical evaluation in an animal model. Fertil Steril 1998;69:318-23.
37. De Iaco PA, Muzzupapa G, Bigon E, et al. Efficacy of a hyaluronan derivative gel in postsurgical adhesion prevention in the presence of inadequate hemostasis. Surgery 2001; 130:60-4.
38. Koçak I, Ünlü C, Akçan Y, et al. Reduction of adhesion formation with cross-linked hyaluronic acid after peritoneal surgery in rats. Fertil Steril 1999;72:873-8.
39. Belluco C, Meggiolaro F, Pressato D, et al. Prevention of postsurgical adhesions with an autocrosslinked hyaluronan derivative gel. J Surg Res 2001;100:217-21.
40. Acunzo G, Guida M, Pellicano M, et al. Effectiveness of auto-cross-linked hyaluronic acid gel in the prevention of intrauterine adhesions after hysteroscopic adhesiolysis: a prospective, randomized, controlled study. Hum Reprod 2003;18:1918-21.
41. Guida M, Acunzo G, Di Spiezio Sardo A, et al. Effectiveness of auto-crosslinked hyaluronic acid gel in the prevention of intrauterine adhesions after hysteroscopic surgery: a prospective, randomized, controlled study. Hum Reprod 2004;19:1461-4.
42. Pellicano M, Bramante S, Cirillo D, et al. Effectiveness of auto-crosslinked hyaluronic acid gel after laparoscopic myomectomy in infertile patients: a prospective, randomized, controlled study. Fertil Steril 2003;80:441-4.
43. Haney AF, Doty E. A barrier composed of chemically cross-linked hyaluronic acid (Incert) reduces postoperative adhesion formation. Fertil Steril 1998;70:145-51.
44. Jackson JK, Skinner KC, Burgess L, et al. Paclitaxel-loaded crosslinked hyaluronic acid films for the prevention of postsurgical adhesions. Pharm Res 2002;19:411-7.
45. Li H, Liu Y, Shu XZ, et al. Synthesis and biological evaluation of a cross-linked hyaluronan-mitomycin C hydrogel. Biomacromolecules 2004;5:895-902.
46. Liu Y, Li H, Shu XZ, et al. Crosslinked hyaluronan hydrogels containing mitomycin C reduce postoperative abdominal adhesions. Fertil Steril 2005;83 Suppl 1:1275-83.
47. Alponat A, Lakshminarasappa S, Yavuz N, et al. Prevention of adhesions by Seprafilm, an absorbable adhesion barrier: an incisional hernia model in rats. Am Surg 1997;63:818-9.
48. Hooker GD, Taylor BM, Driman DK. Prevention of adhesion formation with use of sodium hyaluronate-based bioresorbable membrane in a rat model of ventral hernia repair with polypropylene mesh - a randomized, controlled study. Surg 1999;125:211-6.
49. Baptista ML, Bonsack ME, Delaney JP. Seprafilm reduces adhesions to polypropylene mesh. Surg 2000;128:86-92.
50. Greenawalt KE, Butler TJ, Rowe EA, et al. Evaluation of Sepramesh biosurgical composite in a rabbit hernia repair model. J Surg Res 2000;94:92-8.
51. Van 't Riet M, de Vos van Steenwijk PJ, Bonthuis F, et al. Prevention of adhesion to prosthetic mesh. Ann Surg 2003;237:123-8.
52. Sikkink CJJM, de Vries Reilingh TS, Malyar AW, et al. Adhesion formation and reherniation differ between meshes used for abdominal wall reconstruction. Hernia 2006;10:218-22.
53. Felemovicius I, Bonsack M, Hagerman G, et al. Prevention of adhesions to polypropylene mesh. J Am Coll Surg 2004;198:543-8.
54. Reijnen MMPJ, Meis JFGM, Postma VA, et al. Prevention of intra-abdominal abscesses and adhesions using a hyaluronic acid solution in a rat peritonitis model. Arch Surg 1999; 134:997-1001.
55. Tzianabos AO, Cisneros RL, Gershkovich J, et al. Effect of surgical adhesion reduction devices on the propagation of experimental intra-abdominal infection. Arch Surg 1999; 134:1254-9.
56. Ghellai AM, Stucchi AF, Lynch DJ, et al. Role of a hyaluronate-based membrane in the prevention of peritonitis-induced adhesions. J Gastrointest Surg 2000;4:310-5.
57. Tüzüner A, Kuzu MA, Akin B, et al. The effect of hyaluronan-based agents on adhesion formation in an intraabdominal sepsis model. Dig Dis Sci 2004;49:1054-62.
58. Reijnen MMPJ, Skrabut EM, Postma VA, et al. Polyanionic polysacchardes reduce intra-abdominal adhesion and abscess formation in a rat peritonitis model. J Surg Res 2001; 101:248-53.
59. Sikkink CJJM, de Man B, Bleichrodt RP, et al. Auto-cross-linked hyaluronic acid gel does not reduce intra-abdominal adhesions or abscess formation in a rat model of peritonitis. J Surg Res (in press).
60. Toole BP, Wight TN, Tammi MI. Hyaluronan-cell interactions in cancer and vascular disease. J Biol Chem 2002;277: 4593-6.
61. Toole BP, Hascall VC. Hyaluronan and tumor growth. Am J Pathol 2002;161:745-7.
62. Haverlag R, van Rossen MEE, van den Tol MP, et al. Hyaluronate-based coating solution for prevention of surgical adhesions has no major effect on adhesion and growth of intraperitoneal tumour cells. Eur J Surg 1999;165:791-5.
63. Underwood RA, Wu JS, Wright MP, et al. Sodium hyaluronate carboxymethylcellulose-based bioresorbable membrane (Seprafilm) - does it affect tumor implantation at abdominal wound sites? Dis Colon Rectum 1999;42:614-9.
64. Tan B, Wang JH, Wu QD, et al. Sodium hyaluronate enhances colorectal tumour cell metastatic potential in vitro and in vivo. Br J Surg 2001;88:246-50.
65. Hubbard SC, Burns JW. Effects of a hyaluronan-based membrane (Seprafilm®) on intraperitoneally disseminated human colon cancer cell growth in a nude mouse model. Dis Colon Rectum 2002;45:334-41.
66. Pucciarelli S, Codello L, Rosato A, et al. Effect of antiadhesive agents on peritoneal carcinomatosis in an experimental model. Br J Surg 2003;90:66-71.
67. Sasaki T, Shimura H, Tanaka T, et al. Protection of trocar sites from gallbladder cancer implantation by sodium hyaluronate carboxymethylcellulose-based bioresorbable membrane (Seprafilm) in a murine model. Surg Endosc 2004;18:246-51.
68. Sikkink CJJM, Postma VA, Reijnen MMPJ, et al. Hyaluronan-based antiadhesive membrane has no major effect on intraperitoneal growth of colonic tumour cells. Eur Surg Res 2004;36:123-8.
69. Kusunoki M, Yanagi H, Shoji Y, et al. Reconstruction of the pelvic floor using absorbable mesh with a bioresorbable membrane (Seprafilm) after abdominoperineal rectal excision. J Surg Oncol 1999;70:261-2.
70. Oikonomakis I, Wexner SD, Gervaz P, et al. Seprafilm: a retrospective preliminary evaluation of the impact on short-term oncologic outcome in colorectal cancer. Dis Colon Rectum 2002;45:1376-80.
71. Kusunoki M, Ikeuchi H, Yanagi H, et al. Bioresorbable hyaluronate-carboxymethylcellulose membrane (Seprafilm) in surgery for rectal carcinoma: a prospective randomized clinical trial. Surg Today 2005;35:940-5.
72. Fraser JRE, Laurent TC, Laurent UBG. Hyaluronan: its nature, distribution and turnover. J Int Med 1997;242:23-77.
73. Weigel PH, Frost SJ, McGary CT, et al. The role of hyaluronic acid in inflammation and wound healing. Int J Tiss React 1988; 10:355-65.
74. Oksala O, Salo T, Tammi R, et al. Expression of proteoglycans and hyaluronan during wound healing. J Histochem Cytochem 1995;43:125-35.
75. Brecht M, Mayer U, Schlosser E, et al. Increased hyaluronate synthesis is required for fibroblast detachment and mitosis. Biochem J 1986;239:445-50.
76. Mian N. Analysis of cell-growth-phase-related variations in hyaluronate synthase activity of isolated plasma-membrane fractions of cultured human skin fibroblasts. Biochem J 1986;237:333-42.
77. Abatelango G, Cortivo R, Martelli M, et al. Cell detachement mediated by hyaluronic acid. Exp Cell Res 1982;137:73-8.
78. Barnhart BJ, Cox SH, Kraemer PM. Detachment variants of Chinese hamster cells. Hyaluronic acid as a modulator of cell detachment. Exp Cell Res 1979;119:327-32.
79. Turley EA. Hyaluronan and cell locomotion. Cancer Metastasis Rev 1992;11:21-30.
80. Toole BP. Hyaluronan in morphogenesis. J Intern Med 1997;242:35-40.
81. Toole BP. Proteoglycans and hyaluronan in morphogenesis and differentiation. In: Hay ED (ed). Cell biology of extracellular matrix (2nd edition). New York: Plenum Press, 1991, 305-41.
82. Abatangelo G, Martelli M, Vecchia P. Healing of hyaluronic acid-enriched wounds: histological observations. J Surg Res 1983; 35:410-6.
83. King SR, Hickerson WL, Proctor KG. Beneficial actions of exogenous hyaluronic acid on wound healing. Surgery 1991;109: 76-84.
84. Bertram P, Tietze L, Hoopmann M, et al. Intraperitoneal transplantation of isologous mesothelial cells for prevention of adhesions. Eur J Surg 1999;165:705-9.
85. Lucas PA, Warejcka DJ, Zhang LM, et al. Effect of rat mesenchymal stem cells on development of abdominal adhesions after surgery. J Surg Res 1996;62:229-32.
86. Reijnen MMPJ, Falk P, Holmdahl L, et al. The antiadhesive agent sodium hyaluronate increases the proliferation rate of human peritoneal mesothelial cells. Fertil Steril 2000; 74:146-51.
87. Breborowicz A, Pyda M, Moberly J, et al. Effect of hyaluronan-supplemented dialysate on in vitro function of human peritoneal mesothelial cells. Am J Nephrol 2004;24:316-21.
88. Reijnen MMPJ, van Goor H, Falk P, et al. Sodium hyaluronate increases the fibrinolytic response of human peritoneal mesothelial cells exposed to tumor necrosis factor-alpha. Arch Surg 2001;136:291-6.
89. Reijnen MMPJ, Bleichrodt RP, van Goor H. Pathophysiology of intra-abdominal adhesion and abscess formation, and the effect of hyaluronan. Br J Surg 2003;89:103-9.
90. Sikkink CJJM, Reijnen MMPJ, Falk P, et al. Influence of monocyte-like cells on the fibrinolytic activity of peritoneal mesothelial cells and the effect of sodium hyaluronate. Fertil Steril 2005;84 Suppl 2:1072-7.
91. Sitter T, Sauter M, Haslinger B. Modulation of fibrinolytic system components in mesothelial cells by hyaluronan. Perit Dial Int 2003;23:222-7.
92. Riese J, Schoolmann S, Beyer A, et al. Production of IL-6 and MCP-1 by the human peritoneum in vivo during major abdominal surgery. Shock 2000;14:91-4.